
28 The Delphi Magazine Issue 68

Back To Basics:
A Reintroduction
To Properties, Part 1
by Dave Jewell

As part of our ongoing plans to
improve The Delphi Magazine

we intend to provide a few more
introductory articles aimed at new-
comers to both Delphi and Kylix.
This article is aimed at those who
are relatively new to Object Pascal,
the object-oriented programming
language used by Delphi and Kylix.
Having said that, I reckon that even
seasoned developers will benefit
from brushing up on the basics
from time to time, and I’ve done my
best to incorporate a number of
interesting little tips, techniques
and dodges into these articles.

What Is A Property?
As the title suggests, this article is
an introduction to the concept of
properties. You don’t have to use
the IDE for more than a few minutes
before you realise that all Delphi
components have one or more
associated properties that can be
accessed via the Object Inspector.
The same, of course, is true of any
form objects derived from TCustom-
Form; BorderStyle and Position are
examples of frequently used form
properties. In actual fact, any
Delphi object can have properties,
regardless of whether it’s a form,
visual or non-visual component, or
even some low-level utility class
such as TList. To get the most from
properties, you should try to
remember they’re not just things
that appear in the Object Inspec-
tor: properties are much more gen-
erally applicable than that.

The best way of appreciating
exactly what properties are is to
think about what life would be like
without them! Let’s take a look at
the familiar TForm class, and exam-
ine one of its properties. Suppose
that you’re writing a program with
a main application window which

you want to appear centred on the
computer screen. The simplest
way of doing this is to set the
form’s Position property to
poScreenCenter at design-time (ie
using the Object Inspector) but for
the sake of argument, let’s suppose
that you do this at runtime instead.

In the code snippet in Listing 1, a
button press triggers the event
handler which causes the window
to be centred on screen. From the
perspective of someone who’s
never encountered properties, this
assignment statement simply
looks as if we’re setting some
public field, Position, to a certain
value. In other words, it ‘looks’
(from a syntactic point of view) as
if MainForm has some public field
declared like this:

public
Position: TPosition;

Naturally, this can’t be the case.
Why not? Because setting some
arbitrary variable to a particular
value isn’t going to automatically
change the position of a window, is
it? To see what’s really happening,
we need to peek inside the class
declaration of TCustomForm which
you’ll find inside the FORMS.PAS
source file. Within that class
declaration, you’ll find a property
definition that looks like this:

property Position: TPosition
read FPosition write
SetPosition stored IsForm
default poDesigned;

The keyword property is always
used to introduce a new property
declaration, and is always followed
by the name of the property itself.
In this case, we’re told (or rather,
the compiler is told!) that the

property is called Position and is
of type TPosition. A property dec-
laration can include an optional
read and write clause, both of
which are present in the above
statement. For now, let’s concen-
trate on the read and write clause:
I’ll defer a discussion of the stored
and default keywords until later.

Firstly, look at the read clause.
This tells the compiler that when-
ever an attempt is made to read
this property, the compiler should
replace it with a reference to
FPosition, which is defined as a
private field within the declaration
of TCustomForm:

private
FPosition: TPosition;

To put this another way, any time
you write code which reads the
value of the Position property, the
compiler silently reads the value of
FPosition instead. So this:

X := MyForm.Position;

is transmogrified into this:

X := MyForm.FPosition;

What’s been achieved here? The
key issue is encapsulation. Good
object oriented design dictates
that any object should behave like
a little ‘black box’ as far as the rest
of an application is concerned. An
object is known to the outside
world by means of its properties,
methods and events. The way in
which those properties, methods
and events are implemented
should be totally invisible to the
client code which uses them. Thus,
the code which accesses the Posi-
tionproperty of a form or the Count
property of a TList shouldn’t need
to know how those values are
stored within the implementation
of that object. In essence, the
property mechanism allows us to

procedure TForm1.Button1Click(
Sender: TObject);

begin
MainForm.Position :=
poScreenCenter;

end;

➤ Listing 1



April 2001 The Delphi Magazine 29

decouple the object’s interface
from the internal representation.

Hiding The Implementation:
Getters And Setters
If this isn’t too clear yet, imagine
that you’re writing a class, TOSInfo
which encapsulates real-time oper-
ating system information, such as
the amount of free memory on your
PC. One way of doing this would be
to declare a property:

property FreeMemory: Integer
read FFreeMemory;

In other words, every time the
client code accesses the Free-
Memoryproperty, it actually gets the
value of FFreeMemory which is
assumed to be a private field
within TOSInfo. Hmmm. There’s a
problem here. Since the amount of
free memory is typically changing
all the time, how are we going to
keep this private field up to date? I
guess we could create a timer
within the TOSInfo class and
update the field once every half a
second or so. Stop! Don’t even

think about it!
There’s a much
better way of
doing things
once you real-
ise that you can
specify the
name of a
function rather
than a field in a
property declaration’s readclause:

property FreeMemory: Integer
read GetFreeMemory;

This assumes that we’ve defined a
private routine with this function
prototype:

function GetFreeMemory:
Integer;

In effect, the GetFreeMemory routine
will be called whenever the client
code refers to the FreeMemory
property of TOSInfo, and of course
that’s the point at which we should
update the free memory informa-
tion from the operating system
itself. Thus, we’ve avoided the

need to mess about with timers or
self-updating fields.

What this really boils down to is
that a property ‘exported’ from a
Delphi class need not be stored in
physical memory at all. It doesn’t
need to correspond to a memory
location but can be some value
which is calculated on demand as
and when required. This makes
properties particularly powerful,
especially in the sort of scenario
we’re looking at here.

➤ Figure 1: Here's that part of
the Object Pascal grammar
which relates to properties.
It looks straightforward, but
there's a lot going on
underneath the hood.



30 The Delphi Magazine Issue 68

I refer to GetFreeMemory as a
‘getter’ function because it ‘gets’
the value of a property. Similarly,
you can associate either a field or a
routine name with the write clause
of a property declaration. Again, I
tend to refer to such a routine as a
‘setter’ procedure. In the above
example, we’ve specified a getter
function for FreeMemory, but not a
setter procedure. This is logical
because it’s not possible to
arbitrarily change the amount of
free memory in Windows under
program control! In other words,
this particular property is natu-
rally a read-only quantity, which is
exactly what you’ll get if you omit
the write clause.

By convention, the getter and
setter routines associated with a
property are called GetXXX and
SetXXX where XXX is the name of the
property itself. Thus, you’d use
GetFluxDensity and SetFluxDensity
to read and write the value of a field
called FluxDensity. This conven-
tion is not enforced by the
compiler, although many Delphi

programmers adhere to it since it
helps to relate a particular getter
or setter with a particular
property.

You’ll have hopefully realised
from the above that a getter func-
tion must return a type which is
consistent with the type of the
associated property. If you define
an integer property and try to
associate it with a getter function
that returns a Boolean, then the
compiler will naturally complain.
Similarly, a setter routine is
defined as a procedure (not a func-
tion) which takes exactly one
parameter corresponding to the
required new value of a property. A
complete example is shown in
Listing 2.

There are a couple more conven-
tions used here worth mentioning:
firstly, the private field associated
with the Color property is named
by simply adding an f to the front
of the property name. Here again,
the compiler doesn’t insist that
you do this, but it makes it easier
for other developers to find their
way around your code. Secondly,
the obligatory parameter to the
setter function is called Value. You
can call it whatever you like, but
Value is a favourite of seasoned
component writers! If you’re imple-
menting a property of type String,
then it’s worthwhile using a const
string argument to your property
setter function. This causes Delphi
to produce more efficient code:

procedure SetUserName(
const Value: String);

In terms of encapsulation and
implementation-hiding, setter rou-
tines are particularly important. If
you protect your implementation
behind a setter, then you’ve essen-
tially given yourself the ability to
police the possible values which
can be assigned to the property.
For example, if there’s some
reason why you want to disallow
certain colour assignments, you
can do it as in Listing 3.

In this example, any attempt to
set the Color property to black will
be politely ignored, something that
it obviously wouldn’t be possible
to do if Color were a public field of

the object. In a similar way, any
property which is an enumerated
type could potentially be cast to an
invalid value through malicious
casting, which again can be easily
prevented through the use of a
setter function. Something you’ll
also notice is that getter and setter
routines allow some arbitrary
action to be taken whenever a
property is read or written. In the
above case, any change in the
Color property of the object trig-
gers an immediate call to Refresh,
which (in the case of a visual com-
ponent) will cause it to be immedi-
ately redisplayed in its new livery.
The bottom line is that properties
are very useful things!

Property Visibility Issues
As you’ll appreciate, Object Pascal
offers a number of different ways
of defining the scope of an item,
based upon the use of the private,
protected, public and published
keywords in the class definition. In
a nutshell, private scope means
that an item can only be used
within the source code unit where
the item is defined. The protected
keyword extends the visibility of
the item to any derived class
whereas public scope makes an
item visible without restriction.
The published keyword is a special
case which we’ll be looking at
more closely in the next article.

What this all means is that it’s
perfectly legitimate to define a
property which has, for example,
only private visibility. Such a prop-
erty will only be usable within the
.PAS file where it is defined, but
that’s still useful if you have one or
more classes defined within the
same source file, and want to use
the properties of one class from
another. In fact, it’s perfectly valid
for a class to define private proper-
ties which are only used within the
methods of that same class.

There is one big caveat however.
Look back at the TColored-
Widget.SetColor routine that I
showed you earlier. Suppose you
inadvertently replaced the assign-
ment to FColor with an assignment
to Color, like this:

Color := Value;

➤ Figure 2: Next month, I'll be
explaining how the Object
Inspector uses RTTI to display
property information, how to
fool Object Inspector into
displaying read-only
properties and more...



April 2001 The Delphi Magazine 31

This would cause the compiler to
replace the assignment with a call
to the SetColor routine, and the
result would be instant recursion
with SetColor calling itself forever,
or at least until a stack fault inter-
vened! Because of this potential
pitfall, my personal preference is
to strongly avoid use of a class’s
properties from within the
methods of that same class.

While on the subject of visibility,
you should appreciate that it’s pos-
sible for a derived class to override
property definitions in the ances-
tor class. As a real-world example
of this, take another look at the
declaration for TCustomForm in
FORMS.PAS. Look through the
protected part of the declaration
and you’ll see this:

property Ctl3D default True;

Hmmm... How come this property
doesn’t have an associated type? Is
Ctl3D a byte, a Boolean or a
banana? Whenever you see an
apparent property declaration
that doesn’t include a type, you’re
actually looking at a property over-
ride. In other words, a redefinition
of some property which is already
defined in an ancestor class.
TCustomForm is derived from
TScrollingWinControl which, in
turn, is derived from TWinControl.
This class (defined inside CON-
TROLS.PAS) provides the initial def-
inition of Ctl3D, which, as we all
know, is a Boolean. The line of code

above has just one job, to change
the default value of Ctl3D from
False to True. You can also use
property overrides to increase the
visibility of a previously defined
property, but you can’t use them
to reduce visibility. For example, if
an ancestor property was declared
as protected, then you can
‘promote’ it to public or published,
but you can’t ‘demote’ it to
private.

Array Properties
A particularly nice feature of
Object Pascal is the ability to
create array properties. That is,
properties that behave as if they’re
arrays. Here’s an example of such a
property declaration: notice that
the property declaration has been
declared just as if it were an array.

property FileName[Index:
Integer]: String
read GetFileName
write SetFileName;

I mentioned earlier that a getter
function takes no parameters and

procedure TColoredWidget.SetColor(
Value: TColor);

begin
if Value <> clBlack then begin
FColor := Value;
Refresh;

end;
end;

➤ Listing 3

private
FColor: TColor;
procedure SetColor(
Value: TColor);

published
property Color: TColor
read FColor
write SetColor
default clBtnFace;

➤ Listing 2



32 The Delphi Magazine Issue 68

that a setter procedure takes a
single Value parameter. When it
comes to indexed properties, this
is no longer the case because it’s
also necessary to supply an index
parameter to distinguish between
different ‘elements’ of the array. In
the above case, the getter and
setter routines might look like this:

function
TSomeObject.GetFileName(
Index: Integer): String;

procedure
TSomeObject.SetFileName(
Index: Integer;
const Value: String);

Notice that the Index value always
comes first in the argument list:
this isn’t a matter of choice.
Because there needs to be some
way of passing the array index to
the getter or setter method, the
Delphi documentation states that
you can’t use fields in the
read/write clause of indexed prop-
erty declarations: you must use a
method. Personally, I don’t see
why it wasn’t possible to use a
compatible array as a field and
map the property access directly
onto this field, but then I didn’t
write the compiler!

Surprisingly, Delphi doesn’t
limit you to single-dimensional
arrays. Look at the declaration for
TCanvas in Graphics.Pas and you’ll
see this:

property Pixels[X, Y: Integer]:
TColor read GetPixel
write SetPixel;

Here, Pixels is a two-dimensional
array property. As before, the two
index values, X, Y must precede the
Value parameter in the property
setter routine. In fact, Delphi will
even allow you to create arrays
with non-integer indexes such as:

property Password[const
UserName: String]: string
read GetPassword
write SetPassword;

In this (rather scary!) example, a
property has been declared which
takes a user name as the index
and returns the corresponding

password for that user. You would
define the GetPassword routine like
this:

function
TPasswordManager.GetPassword(
const UserName: String):
String;

With such a property, client code
could retrieve a password as easy
as this:

TPOP3.MessageText := ‘Shhh: ‘+
‘Dave’’s Password is ‘+
PWManager.Password[
‘Dave Jewell’];

So far, we’ve just skimmed over the
surface of property support under
Delphi and Kylix. In the second
part of this article, we’ll delve con-
siderably deeper. Amongst other
things, I’ll take a look at Object
Inspector compatibility, the
format of RTTI, default properties,

➤ Figure 3: As you might expect,
there are a lot of similarities
between the Object Pascal
concept of properties, and the
way in which Microsoft .NET
does it. Here again, I'll discuss
this in more detail in Part 2.

indexed properties, persistence,
implementing read-only proper-
ties that show up in the Object
Inspector (such as the ubiquitous
About property), and the new sup-
port for property categories in
Delphi 5. As an aside, I’ll also show
you how properties are imple-
mented in Microsoft .NET: it’s
almost as good as Delphi!

Dave Jewell is the Technical Editor
of The Delphi Magazine; email
him at TechEditor@itecuk.com


	What Is A Property?
	Hiding The Implementation: Getters And Setters
	Property Visibility Issues
	Array Properties

